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Abstract. Non-orthogonal multiple access (NOMA) is an essential technology in wireless communications 

because it can increase the number of users. However, it needs the accurate channel state information (CSI) 

to achieve successive interference cancellation (SIC) and the signal detection. To that end, we propose a 

laplacian densely connected channel estimation network in NOMA system. The network integrates the 

laplacian pyramid structure between the dense connected blocks to reconstruct the complete channel matrix 

based on channel matrix at pilot positions. The Laplacian pyramid structure can gradually increase the size of 

channel matrix which make full use of channel matrix information of different sizes, and the dense connected 

network reuse the network information to enhance the network performance. The 3rd Generation Partnership 

Project (3GPP) channel models and mean square error as estimation error are adopted to evaluate the network 

performance. The estimation error shows that the proposed network is better than least squares (LS) 

estimation with linear interpolation, and competitive to the minimum mean square error (MMSE) estimation.  

Keywords: Channel estimation, densely connected network, image super-resolution, non-orthogonal 

multiple access (NOMA). 

1. Introduction 
Non-orthogonal multiple access (NOMA) can satisfy the growing communication demands in the next 

generation communication system. It introduces the controllable nonorthogonal in the power domain at the 

transmitter to enhance communication system capacity and spectrum effectiveness, which means the 

multiple users share time and frequency resources in the power domain[1]. The transmitter can assign power 

to multi users by superposition coding. The Successive Interference Cancellation (SIC) receiver removes the 

interference from other users signal and decodes its own signal by the Channel State Information (CSI)[2]. 

The CSI can be obtained by the pilot-aided channel estimation, including Least Square (LS) estimation and 

Minimum Mean Square Error (MMSE) estimation. LS estimation accuracy is low, and MMSE estimation 

has very low estimation error which requires channel statistics and noise variance as prior information. 

However, the prior information is difficult to obtain in the actual communication system, and MMSE 

estimation has a very high computational complexity because of matrix inverse. The traditional channel 

estimations cannot cope with complex channel environments and communication scenarios. 

A novel linear estimation for NOMA system is proposed to improve the average effective signal-to-

interference-and-noise ratio (SINR) of one strong user while guaranteeing a bounded average effective SINR 

of the weak user[3]. A least mean squares (LMS)-based channel estimation approach is presents for NOMA 

system[4]. These estimations are an improvement on the traditional methods, and they are incapable of 

capturing the change in the complicated channel information. Deep Learning based wireless communication 

techniques have aroused considerable interest among the academic due to its excellent learning ability 

including signal detection[5], active user detection[6], and modulation detection[7]. It provides another 

channel estimation method which learn the input-output mapping by data-driven. The Deep Neural 

Networks(DNN) is utilized to solve the joint channel estimation and SIC for downlink Multiple Input 

Multiple Output-NOMA system, which outperformed the traditional SIC method[8]. The combined 

convolutional neural network(CNN) feature extractor and long short-term memory (LSTM) network is 

incorporated into a NOMA system to end-to-end signal detection and implicit channel estimation, which 

shows robust and efficient[9]. The channel estimation is implicitly included in the above network which 

achieve better performance, whereas it is not able to provide the complete CSI. It is not effective for some 
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scenarios such as transmitter power allocation. The super-resolution(SR) algorithm based on deep learning is 

used to deal with the channel estimation problem of OFDM systems, because the channel matrix can be 

considered as an image[10].  

Motivated by this, we propose a Laplacian Densely connected Channel Estimation Network (LdEsNet) 

in NOMA systems which introduce the SR algorithm to solve the channel estimation. The proposed 

estimation network combines the laplacian pyramid structure and dense connected block to reconstruct the 

complete channel matrix by the channel matrix at pilot positions. The channel matrix reconstruction is 

divided into two stages to gradually enlarge the size of channel matrix, which make full use of the channel 

matrix information of different sizes. Furthermore, the densely connected reuses the network information, 

which decreasing the parameters number to some extent.  

The remainder of the letter is organized as follows: Section 2 briefly introduce the NOMA system model. 

Section 3 presents the structure of the proposed channel estimation network. In section 4, the simulation 

results are presented and section 5 concludes the letter. 

2. System Model  
In this section, we consider a downlink NOMA system with one base station (BS) and two user 

equipment (UE) as shown in Fig. 1. The UE are deployed at different distances from the BS, and the channel 

gain of the proximal UE is higher than the remote UE. The channel gain determines transmit power 

coefficient, and the UE with high channel gain is allocated to low power. 
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Fig. 1: Downlink NOMA system 

The transmitted coded modulation signal of the i-th UE is denoted by { 1,2} S DN N
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ii
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=
= = . The sN  is the number of time slots, and the DN  is the subcarriers 

numbers in the 5G New Radio (NR). The distance between UE1 and the BS is closer than UE2, so the power 

allocation is 1 2p p . The two signals are superimposed as the NOMA signal X ,which pass through the 

channel to UE. S DN N

ih


  means the Rayleigh fading channel between the UE and the BS, and iw  means the 

additive white gaussian noise (AWGN) with zero mean and variance 2 . The  means the Hadamard 

product. 

1 1 2 2X p x p x= +
                                                                             (1) 

1 1 2 2( )i i i iy h X w h p x p x w= + = + +
                                                   (2) 

The UE implement the SIC process to delete the other user signal after receiving the signal y . The SIC 

detect the signal in order of strength and weakness. At the near end UE1, the signal of UE2 can be directly 

detected, because the signal of UE2 has more power than UE1. The UE1 signal acquire by eliminating the 

UE2 inter-interference signal from the y . 

1 1 1 1 2 2y h X w h p x= + −
                                                             (3) 
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where the 1 2 2h p x  is the reconstruction UE2 inter-interference signal, and the 2x  is the directly 

detection signal. The UE1 signal 1x  also can be detected from the residual signal 1y . The CSI is necessary 

both the signal decoding and SIC process in the UE, and it can be acquired by inserting the pilot symbol into 

the transmission signal X . The pilot signal received in the UE py  can be expressed as:  

p p p py h x w= +
                                                            (4) 

where px  is pilot symbols in the transmitter, and PS PDN N

ph


  is the channel matrix at pilot positions. pw  

is AWGN at pilot positions. PSN  and PDN  are the number of time slot and subcarriers at pilot positions 

respectively.  

The channel estimation at pilot positions ph  is estimated by the LS estimation, which is transformed into 

the following optimization problem:  
2

2

ˆ arg min
p

LS

p p p pH y H x
H

= −

                                                                         (5) 

where 
2

  means the L2 distance, and pH  is the estimated channel matrix. The optimization of (5) results in:  

1ˆ ˆ( )LS LS

p p p ph diag H y x −= =                                                                         (6) 

where 
1( ) −  is the Hadamard inverse. 

The traditional way to obtain the complete channel matrix ĥ  is to interpolate at the non-pilot positions. 

In this letter, the image super-resolution algorithm is introduced to map the ph  to ĥ . 

3. Proposed Channel Estimation Network  

3.1 Channel Image 
The image SR algorithm reconstructs the high-resolution (HR) from low-resolution (LR), which is 

similar to the pilot-aided channel estimation. The mathematical form can be expressed as: 

ˆ ( ; )y xI f I =
                                                                                       (7) 

where xI  is the low-resolution image, ˆ
yI  represents the recovered high-resolution image, f  means the 

SR model with parameters of  . 

The channel estimation problem is transformed into a signal image SR problem. The channel matrix at 

pilot positions ph  is viewed as a low-resolution image, and the estimated channel matrix ĥ  is viewed as a 

high-resolution image which needs to be recovered. The real and imaginary parts of the channel coefficient 

matrix are divided into two parts like two images, because the neural network cannot process the complex 

value. 

3.2 Network Structure 
The proposed network is mainly composed of the densely connected conventional networks 

(DenseNet)[11] and the laplacian pyramid structure[12]. Densenet has been widely adopted in image super 

resolution problem by reusing the feature information. In each dense block, the input of the later layer is 

concatenation of all the previous layer feature, instead of features combing such as Residual Network 

(ResNet). There are two benefits: 1. The concatenation of feature enhances feature utilization, and mitigates 

the gradient vanishing. 2. The number of network parameters are reduced to some extent. In DenseNet, the 

HR image is reconstructed by a deconvolution layer of last layer, but one deconvolution layer is difficult to 

learn the complex mapping of LR image to HR image. The laplacian pyramid structure utilizes the multi-size 

deconvolution layer to restore image resolution step by step, which makes the network can learn the image 

characteristics of different sizes to enhance network performance.  

Motivated by advantages of two network, we propose a Laplacian densely connected network which is 

specifically designed for channel estimation. The network structure is shown in Fig.2(a). The input of 

network is the channel matrix at pilot positions which is estimated by LS estimation. The first layer is a 

convolutional layer with 24 filters of size 3 3 , which maps the input ph  of size PS PDN N  to output of size 

24PS PDN N  . Then the two dense blocks and deconvolutional layers are used to extract channel 
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characteristic information, and gradually restore the matrix size. The first deconvolutional layer extends the 

matrix size to half the target matrix, and the second one expands the matrix to S DN N . The structure of 

dense block is shown in Fig.2(b). It contains bottleneck block, concatenation process, and transition layer. 

The input of bottleneck block is the concatenation of inputs all of previous bottleneck block, and the 

transition layer between two dense blocks reduces the number of characteristics images by convolution. The 

number of feature maps generated by each layer, the growth rate K, is 12. The bottleneck block includes 

batch normalized layer and two convolution layers, which shows as Fig.2(c). The size of the convolution 

kernel are 1 1  (Conv(1*1)) and 3 3  (Conv(3*3)), respectively. The batch normalized layer normalizes the 

inputs to increase network stability, and the Conv(1*1) layer is to reduce the number of input feature maps 

and computational cost. The Conv(3*3) layer is to extract channel characteristic information. The last 

reconstruction layer uses one filter of size 3 3  to reconstruct the complete estimated channel ĥ . 

BatchNorm+ReLU

Conv(1*1)

BatchNorm+ReLU

Conv(3*3)
Bottleneck

 

Fig. 2:  (a) The structure of proposed channel estimation network; (b) The structure of the dense block; (c) The structure 

of the bottleneck block. 

3.3 Training 
The application of network is divided into two stages: off-line training and on-line deployment. The 

training stage can be Mathematically as: 

ˆ ( ; )ph f h =
                                                                      (8) 

where ĥ  is the estimated channel matrix, f  is the network model, ph  is the channel matrix at pilot 

positions, and   is the network parameters. The network utilizes the training set which is generated by the 

system model to learn the mapping from ph  to ĥ  through multiple iterations. The network parameters are 

updated in each iteration to reduce the value of the loss function. 

The loss function C of the network is the MSE loss between the estimated channel ĥ  and the 

presupposed i-th UE channel ih  as follows: 

1 ˆ

p

i

h T

C h h
T 

= −
                                                        (9) 

where T  is all training data sets, and T  is the size of the training sets. The network training goal is to 

minimize the loss function C by using some optimization algorithm like Stochastic gradient descent (SGD), 

Adaptive moment estimation (Adam) et al. The optimization process of the network determines the 

parameters  , such as the weights at convolution layer and deconvolution layer. The trained network can be 

deployment in the communication system for channel estimation. 

3.4 Complexity 
In this section, the computational complexity analysis is presented to compare the complexities of the 

proposed network and traditional methods. The complexity of network models is measured by the number of 

floating-point operations (FLOPs). The FLOPs of one convolution layer is 
2((2* * 1)* * * )in outO C K H W C− , 

where inC  and outC  represent the number of input channel and output channel, respectively. The K  is the size 

of the convolution kernel. The symbols H  and W  denote the size of the output feature map. The required 

FLOPs of proposed network is 
2( (2* * 1)* * * )l in outO n C K H W C− . The ln  is the total number of convolutional 

layers and deconvolutional layers, because the deconvolutional layer required the same FLOPs as 

convolutional layer. The complexity of the traditional method LS is ( )O L , where L is the length of signal 
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sequence. The complexity of the MMSE method is larger than 
2.37( )O L  owing to the matrix inversion 

operation[13]. The proposed network is proportional to the input signal length L , which is pretty small 

compared with the MMSE estimator.  

4. Simulation Results 
In this section, the proposed channel estimation network is trained by using the simulation data and is 

compared with the traditional methods. In this experiment we consider a downlink NOMA system, and the 

size of NOMA signal is 52 subcarriers and 14 OFDM symbols. The ratio of the two UEs power distribution 

is 0.2:0.8. The NOMA signal and channel coefficient matrix are generated by MATLAB, and the channel 

model is the Extended Pedestrian A(EPA) model from 3gpp. The carrier frequency of the channel model is 

2.1 GHz, the bandwidth is 10 MHz, and the UE speed is 5km/h. Totally 60,000 channel matrices are divided 

into 60% training, 20% test and 20% validation sets. The MSE between the estimated and the actual channel 

is to evaluate the performance of different channel estimation methods. 
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Fig. 3:  Channel estimation MSE of different methods 
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Fig. 4:  Channel estimation MSE for different numbers of pilots 

 

The channel estimation MSE under different SNR of the LS estimation, MMSE estimation, ChannelNet, 

and the proposed network shows in Fig.3. The number of pilots inserted into the signal is 48. The LS 

estimation uses the linear interpolation to recover the complete channel on the basic of the channel matrix at 

pilot positions, and the MMSE estimation utilizes the prior channel statistic and noise variance to recover the 

complete channel. Therefore, the MSE of MMSE can be treated as a lower bound with the performance of 
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estimation. The ChannelNet is the channel estimation network in OFDM by using SRCNN, which is applied 

to NOMA system for comparison. The proposed network demonstrated superior performance over LS and 

ChannelNet estimation, and the one reason is that it learns channel matrix information of different sizes. The 

LdEsNet estimation shows close to MMSE estimation performance, and do not require the priori channel 

information. 
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Fig. 5:  Channel estimation MSE of EPA for different paths 

 

The channel estimation MSE for different numbers of pilots at 20dB SNR is to assess the performance of 

estimation algorithm, and the simulation results is shown in Fig.4. The performance of LdEsNet is constantly 

improved with the numbers of pilots, and the reason is that the increased input data enhance the information 

available to the LdEsNet. The increase of the pilots enhances the performance of the estimation, but it will 

reduce the transmission efficiency of communication system. Besides, the LdEsNet has better performance at 

low pilot numbers. 

To evaluate the LdEsNet performance when mismatch between training and application scenarios, we 

compare the channel estimation MSE of EPA model for different paths in Fig.5. The LdEsNet is trained 

under EPA with 7 paths, and tested under the EPA with 1 path, 5 paths, 7paths. The overall performance of 

LdEsNet is stable under EPA model with different paths.  
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Fig. 6:  Channel estimation MSE for different users 

 

The test results of the proposed network in multi-user scenarios are shown in Fig.6. Three users use the 

same time-frequency resource, and the channel condition gradually deteriorates. User3 had the worst 
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estimated performance because it was not learned by network training. However, it still has better 

performance than LS. The network can be applied to multi-user NOMA systems for channel estimation. 

5. Conclusion 
In this letter, we propose a laplacian densely connected channel estimation network in NOMA system. 

The receiver utilizes the proposed network to reconstruct the high-resolution complete channel matrix from 

the low-resolution channel matrix at pilot positions by LS estimation. The proposed network combines the 

dense network and laplacian pyramid structure, which can attain the channel characteristics of different sizes 

to improve the channel estimation performance. Besides, the network can be adapted for different 

communication scenarios, which requires the complete CSI. The simulation results show that the LdEsNet is 

more competitive which do not require the channel statistic and noise variance with the MMSE algorithm. 
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